top of page

What's New

AI Can Help Patients Recover Ability to Stand and Walk

 

By Charles Q. Choi

Posted 19 Jul 2017 | 18:00 GMT

Artificial intelligence software combined with a robotic harness could help spinal injury and stroke patients walk again. Clinical trials are underway. Rehabilitation programs for spinal cord injuries or strokes usually have patients walk on treadmills at a steady pace while harnesses support their weight to varying degrees. In the new study, researchers sought to develop a system that better mimicked the conditions that people might experience during everyday life, where they would have to move in more than one direction and vary their gaits.

 

“The idea is to provide the most appropriate environment for patients to be active during training,” says study co-author Grégoire Courtine, a neuroscientist at the Swiss Federal Institute of Technology Lausanne. “The goal of this rehabilitation is to have patients repeat natural activities for an extended amount of time.”

The scientists developed a robotic harness that uses cables to control the amount of upward and forward force that patients feel while also permitting them to walk forwards, backwards, and side to side. This robotic harness was controlled by software that personalized the multidirectional forces that each patient experienced depending on their specific problems.

 

In order to customize patient experiences, this system relied on an artificial neural network, where components known as artificial neurons are supplied data and work together to solve a problem. The neural net can then alter the pattern of links among those neurons to change the way they interact, and the network tries solving the problem again. Over time, the neural net learns which patterns are best at computing solutions, an AI strategy that imitates the human brain.

Read more

E-Mosquito Drinks Your Blood to Keep You Healthy

 

By Gang Wang

Posted 22 Jun 2017 | 12:49 GMT

Mosquitoes are some of the most adept bloodsuckers on Earth. With a quick jab, sharp mouthparts plunge into human skin in search of a juicy blood vessel.

 

It’s no surprise, then, that bioengineers have used the pest as inspiration for a device to periodically and independently sample the blood of individuals with diabetes. Fingerpricking, the most common method used today, can be a tedious and painful process, and many companies have raced to develop alternative approaches, including glucose sensor implants and semi-automated monitoring devices.

 

Enter the “e-Mosquito.” Since 2007, a team at the University of Calgary in Canada has been developing a fully autonomous, minimally invasive device that is pre-programmed to “bite” one’s skin at various times during the day to monitor blood glucose levels. They recently premiered their latest prototype, a watch-like device that taps into capillaries under the skin and deposits a drip of blood onto a glucose-testing strip.

“The idea is to have periodic, spontaneous and autonomous biting resulting in reliable blood testing,” says Martin Mintchev, senior author on the project. “It’s a very significant step in demonstrating autonomous contact with the capillary.” In addition to monitoring blood glucose, Mintchev imagines the device someday being used to do other blood tests, such as genetic testing or cancer screening, from the comfort of one’s home.

 

Early versions of the device relied on piezoelectric actuators to pierce the skin with a needle, but those moving parts were expensive and bulky, so the first prototypes were roughly the size of a deck of cards—not something you’d want to wear on your wrist or arm.

Read more

bottom of page