top of page

What's New

Robotic thread is designed to slip through the brain’s blood vessels

Magnetically controlled device could deliver clot-reducing therapies in response to stroke or other brain blockages.

By Jennifer Chu | MIT News Office

MIT-Robo-Thread_0.jpg

MIT engineers have developed robotic thread (in black) that can be steered magnetically and is small enough to work through narrow spaces such as the vasculature of the human brain. The researchers envision the technology may be used in the future to clear blockages in patients with stroke and aneurysms.

Image courtesy of the researchers

MIT engineers have developed a magnetically steerable, thread-like robot that can actively glide through narrow, winding pathways, such as the labrynthine vasculature of the brain.

In the future, this robotic thread may be paired with existing endovascular technologies, enabling doctors to remotely guide the robot through a patient’s brain vessels to quickly treat blockages and lesions, such as those that occur in aneurysms and stroke.

“Stroke is the number five cause of death and a leading cause of disability in the United States. If acute stroke can be treated within the first 90 minutes or so, patients’ survival rates could increase significantly,” says Xuanhe Zhao, associate professor of mechanical engineering and of civil and environmental engineering at MIT. “If we could design a device to reverse blood vessel blockage within this ‘golden hour,’ we could potentially avoid permanent brain damage. That’s our hope.”

Zhao and his team, including lead author Yoonho Kim, a graduate student in MIT’s Department of Mechanical Engineering, describe their soft robotic design today in the journal Science Robotics. The paper’s other co-authors are MIT graduate student German Alberto Parada and visiting student Shengduo Liu.

In a tight spot

To clear blood clots in the brain, doctors often perform an endovascular procedure, a minimally invasive surgery in which a surgeon inserts a thin wire through a patient’s main artery, usually in the leg or groin. Guided by a fluoroscope that simultaneously images the blood vessels using X-rays, the surgeon then manually rotates the wire up into the damaged brain vessel. A catheter can then be threaded up along the wire to deliver drugs or clot-retrieval devices to the affected region.

Read more

RWKW1SOX.jpg

Neuralink calls its first brain-computer chip the N1

Neuralink

More than two years have passed since the world caught wind of Elon Musk's Neuralink, an ambitious and mysterious startup focused on developing brain-machine interfaces that can connect minds to machines. Not a lot has been revealed since, but the company today emerged from the shadows to share its progress so far, along with its plans for the future, which involve implanting its first chips in human as early next year.

There are quite a few reasons we might want to connect our brains to machines, and there are already a few ways of doing it. The primary methods involve using electrodes on the scalp or implanted into the brain to pick up the electrical signals it emits, and then decode them for a variety of purposes.

 

As we have seen in the last few years alone, these brainwaves could be used to control drones or an exoskeleton, allow paralyzed people to regain control over their limbs or use tablets and computers with their thoughts. As it stands, though, these electrodes are limited in how much information they can relay from the brain, and that's one of the key problems Neuralink has set out to solve.

The motivation for a new and improved brain-machine interface, Musk says, is to firstly understand and treat brain disorders, and then ultimately to enhance our brains to create a sort of "symbiosis" with artificially intelligent machines, rather than have them leave us behind.

Read more

bottom of page