top of page

What's New

Team Builds the First Living Robots

 

Tiny 'xenobots' assembled from cells promise advances from drug delivery to toxic waste clean-up

xenobot-organism-pair-800x400.jpg

On the left, the anatomical blueprint for a computer-designed organism, discovered on a UVM supercomputer. On the right, the living organism, built entirely from frog skin (green) and heart muscle (red) cells. The background displays traces carved by a swarm of these new-to-nature organisms as they move through a field of particulate matter. (Credit: Sam Kriegman, UVM)

A book is made of wood. But it is not a tree. The dead cells have been repurposed to serve another need.

Now a team of scientists has repurposed living cells—scraped from frog embryos—and assembled them into entirely new life-forms. These millimeter-wide "xenobots" can move toward a target, perhaps pick up a payload (like a medicine that needs to be carried to a specific place inside a patient)—and heal themselves after being cut.

 

"These are novel living machines," says Joshua Bongard, a computer scientist and robotics expert at the University of Vermont who co-led the new research. "They're neither a traditional robot nor a known species of animal. It's a new class of artifact: a living, programmable organism."

The new creatures were designed on a supercomputer at UVM—and then assembled and tested by biologists at Tufts University. "We can imagine many useful applications of these living robots that other machines can't do," says co-leader Michael Levin who directs the Center for Regenerative and Developmental Biology at Tufts, "like searching out nasty compounds or radioactive contamination, gathering microplastic in the oceans, traveling in arteries to scrape out plaque."

The results of the new research were published January 13 in the Proceedings of the National Academy of Sciences.

Bespoke living systems

People have been manipulating organisms for human benefit since at least the dawn of agriculture, genetic editing is becoming widespread, and a few artificial organisms have been manually assembled in the past few years—copying the body forms of known animals.

 

But this research, for the first time ever, "designs completely biological machines from the ground up," the team writes in their new study.

Read more

Smaller than a coin

by Felix Würsten

ETH researchers have developed a compact infrared spectrometer. It’s small enough to fit on a computer chip but can still open up interesting possibilities – in space and in everyday life.

image.imageformat.fullwidth.612300368.jp

Approximately 2 cm in length, this chip makes it possible to precisely analyse the infrared spectrum. (Photograph: ETH Zurich / Pascal A. Halder)

Nowadays, a mobile phone can do almost anything: take photos or video, send messages, determine its present location, and of course transmit telephone conversations. With these versatile devices, it might even be possible to ascertain a beer’s alcohol content or how ripe a piece of fruit is.

 

At first glance, the idea of using mobile phones for chemical analyses seems a daring one. After all, the infrared spectrometers used for such analyses today generally weigh several kilograms and are difficult to integrate into a handheld device. Now researchers at ETH Zurich have taken an important step towards turning this vision into reality. David Pohl and Marc Reig Escalé, in the group headed by Rachel Grange, Professor of Optical Nanomaterials in the Department of Physics, collaborated with other colleagues to develop a chip about 2 square centimeters in size. With it, they can analyse infrared light in the same way as they would with a conventional spectrometer.

 

Read more

bottom of page