What's New
A new technique developed by University of Minnesota researchers allows 3D printing of hydrogel-based sensors directly on organs, like the lungs, that change shape or distort due to expanding and contracting. Credit: McAlpine Research Group, University of Minnesota
In groundbreaking new research, mechanical engineers and computer scientists at the University of Minnesota have developed a 3D printing technique that uses motion capture technology, similar to that used in Hollywood movies, to print electronic sensors directly on organs that are expanding and contracting. The new 3D printing technique could have future applications in diagnosing and monitoring the lungs of patients with COVID-19.
The research is published in Science Advances, a peer-reviewed scientific journal published by the American Association for the Advancement of Science (AAAS).
The new research is the next generation of a 3D printing technique discovered two years ago by members of the team that allowed for printing of electronics directly on the skin of a hand that moved left to right or rotated. The new technique allows for even more sophisticated tracking to 3D print sensors on organs like the lungs or heart that change shape or distort due to expanding and contracting.
“We are pushing the boundaries of 3D printing in new ways we never even imagined years ago,” said Michael McAlpine, a University of Minnesota mechanical engineering professor and senior researcher on the study. “3D printing on a moving object is difficult enough, but it was quite a challenge to find a way to print on a surface that was deforming as it expanded and contracted.”
Read more
Image Credit: crystal light / Shutterstock.com
10 percent of the global population suffers from some form of kidney disease. That includes 37 million people in the US, 100,000 of whom pass away each year awaiting a kidney transplant.
Our kidneys are crucial for keeping us alive and healthy. A sort of chemical computer that keeps our blood chemistry stable—whether we’re eating a sugary birthday cake or a vitamin-filled salad—they prevent waste buildup, stabilize our electrolyte levels, and produce hormones to regulate our blood pressure and make red blood cells.
Kidneys clean our blood using nephrons, which are essentially filters that let fluid and waste products through while blocking blood cells, proteins, and minerals. The latter get reintegrated into the blood, and the former leave the body in urine.
Scientists have struggled to come up with viable treatments for kidney disease and renal failure, and their complexity means kidneys are incredibly hard to synthetically recreate; each kidney contains around one million intricately-structured nephrons.
But new progress from chemical engineering researchers at the University of Arkansas has brought functioning artificial kidneys one step closer. The researchers created a device that was able to filter blood in a way similar to biological nephrons. They described the device in a recent paper published in Nature Communications Materials.